Agriculture & Climate Change:

MEETING THE CHALLENGES

CHARLES L. WALTHALL PHD

NATIONAL PROGRAM LEADER

NATURAL RESOURCES & SUSTAINABLE AGRICULTURE SYSTEMS
UNITED STATES DEPARTMENT OF AGRICULTURE, AGRICULTURAL RESEARCH SERVICE

21st Century Agriculture: Intensification

- 2050 world population: 9+ billion
- Decreasing land area for cultivation
- Soil degradation
- Water: quantity & quality
- Nutrient availability & management
- Increasing production expenses
- Multifunction landscapes: ecosystem services

Agriculture Marches On:

- Industrial Revolution: Mechanization
 - Large areas Fast!
- "Green Revolution"
 - Crop genetics focus Continues!
- Information Revolution: Precision agriculture
 - Spatial & temporal variability
 - Yields & limiting factors
- Traditional challenges to production still exist....and.....now

Climate Change

- National Climate Assessment document
- Science literature *synthesis* update (2009-2012: 1400+ references)
- Foundation for risk analysis, future NCA
- Peer reviewed "Readable Desk Reference"
- Created Community of scientists
 - USDA-ARS
 - Universities & Industry
 - >55 contributors
- No Mitigation: see CAST Report:

Abiotic Effects....

- Changes of precipitation patterns
 - Some places drier, others wetter
 - Decreased snowfall & timing of snow melt
- Greater variability of precipitation
 - More short, intense events
 - Shift of timing of events
- More severe weather events
 - Hail, storms, wind, etc.

WATER Too much, too fast Not enough Moisture Status - 2002

Ground water & soil moisture recharge

Competition: urban & agriculture

Agroecosystem System Effects

- Soil
 - Water & wind erosion losses
 - Loss of nutrients, carbon
 - Soil biology functions affected
- Ecosystem Services
 - Watershed: ground water recharge & irrigation
 - Pollinator life cycles: Timing & shifts of populations
 - Biodiversity: wildlife
 - Carbon sequestration
 - Recreation

Biotic Effects

Cheatgrass fire hazard?

C:N ratio + resistance?

Enhanced CO₂ fertilization

Changing habitats

C:N ratio + lodging?

Weeds, vines, invasive plants, Insects Pathogens, Animals

Overwintering vs die-off

Herbicide effectiveness??

Beneficial Effects: Abiotic

Too warm for pests & pathogens?

Reduced incidence of frost

Increased concentrations of phenolic compounds

Decreased water: Better Red Wine?????

Increased Biotic Stresses

Insect pests

- Greater numbers, increased insecticide resistance
- Geographic ranges increases & decreases
- Imports from foreign sources

Pathogens

- Host-pathogen response changes (plants, insects, non-crop reservoirs)
- Cultural control measures may be less reliable
- Extreme events can spread

Weeds

- Increased vigor, herbicide resistance
- Geographic range increases & decreases

Livestock Production is Vulnerable

- Feed Grain & Forage
 - Quantity & <u>Quality</u> <u>Decrease</u>
 - <u>Production</u> <u>Cost Increase</u>
- Animal Heat & Humidity Stress
 - Reduces growth, reproduction,production (meat, dairy, eggs)
 - -- Climate control costs increase
- Disease & Pests
 - Frequency, intensity, distribution
 - Abundance and/or distribution of competitors,
 predators, & parasites of vectors themselves

Extreme Events*

Year	Event	Location	Economic Impact
2011	Missouri River Flooding	Upper Midwest (MT, ND, SD, IA, KS, MO)	\$2.0 Billion
2011	Mississippi River Flooding	Lower Mississippi River (AR, TN, LA, MS, MO)	\$1.9 Billion
2011	Heat/Drought	Southern Plains, Southwest	\$10 Billion
2009	Drought	Southwest/Great Plains (CA, TX, GA, TN, NC, SC)	\$5.3 Billion
2008	Flooding	Upper Midwest (IA, IL, IN, MO, MN, NE, WI)	\$15.8 Billion NCDC 2011

Currently, NCDC estimates that the cost of the 2012 drought that affected much of the U.S. had an economic impact of \$12B. This estimate was not reviewed or available prior to publication of this report, however, and may change.

^{*}Extreme events have been shown to be more probable than 40–50 years ago. However, one cannot attribute any single event to climate change alone.

Take Home Messages.....

- Effects will continue: Abiotic & Biotic
 - Yield quantity & quality
 - Cost of production
- Effects to intensify: beyond 20-30 years
- Generations: Future farming & climate different
- Risk Management. More climate & weather
- Natural resources base: soil, water, air
- Ecosystem services: pollinators, biodiversity

Adaptation

- Current practices can offset <u>some</u> effects over next 20-30 years: but not all
- Environment, economics, social systems: interactions affect decision making & consequences
- Decision criteria: farm-level costs/benefits, perception of risk, access to <u>actionable</u> information
- Roles for Adaptation Planning & Adaptive Management
- Develop climate friendly <u>crops</u> & <u>production systems</u>
- Balanced research: Genomics + Environment + Management

Can enhanced rates of crop improvement be realized by a more integrated approach?

HOW DO THIS????? A Framework for Research

- Address Vulnerability to climate change
 - Understand Exposure
 - What parts of agriculture can be affected?
 - Understand Sensitivity
 - o How <u>much</u> will agriculture be affected?
 - Enhance Adaptive Capacity
 - Strengthen how agriculture can adjust to moderate potential damages, take advantage of opportunities, cope with consequences

How do we enhance adaptive capacity?

- Genomics x Environment x Management
 - Genomics: Variety
 - Environment: Abiotic & biotic effects on agriculture & effects of agriculture on environment
 - Management: Production practices
 Soil management

Soil Quality/Soil Health/ Soil Security: Nutrient Management

- Inorganic
- Organic

Promising signs for sustainability....

- Liquid
- Encapsulated/slow release
- Innoculants
- Paired Innoculant-crop combinations
- Other soil-biology oriented: biotic fertilizers

Why do these work? How do these work?

Soil Health: physical, chemical, biological

Mounting evidence points to benefits of managing soil biology component of soil health

- Crop Genomics + Management Practices
 - Nutrient Management Focus on Soil Biology

The Next Revolution for Agriculture?

A Challenge to Business as Usual for Science Community

GxExM

Collaboration & development of communities are key.....

Can we "staff" challenges with multiple disciplines ~ Mayo Clinic?

Climate Change & Agriculture: Challenge to Sustainability*

- Satisfy human needs* for food, feed, and fiber, and contribute to biofuel
- Enhance environmental quality and the resources base
- Sustain economic viability of agriculture
- Enhance the quality of life for farmers, farm workers, and society as a whole

Metrics!

Thank you

Charles L. Walthall PhD

charlie.walthall@ars.usda.gov

